method used in the present work.

- (1) Castañeda, J. M. B.Sc. Thesis, Fac. de Química, UNAM, México, 1978.
- (2) Lozano, F. J.; Garfias, F. J. *Rev. Soc. Qum. Méx.* 1978, *22*, 436.
 (3) Zepeda, J. L.; Lozano, F. J.; Garfias, F. J. *J. Chem. Eng. Data* 1979, *24*, 287.

Received for review April 24, 1980. Accepted November 4, 1980.

Partial Miscibility Behavior of the Methane–Ethane–*n*-Octane System

J. D. Hottovy, James P. Kohn,* and Kraemer D. Luks

Department of Chemical Engineering, University of Notre Dame, Notre Dame, Indiana 46556

The phase behavior of the ternary system methane-ethane-*n*-octane was studied in the region of immiscibility. Two ilquid phases and a vapor phase (L_1-L_2-V) were found to exist in this system in a region extending from 197.8 K and 43.3 atm to ~ 222 K and 69 atm. Pressure and ilquid-phase composition and ilquid-phase molar volume data for both of the coexisting ilquid phases were measured and are presented as a function of temperature. The immiscibility area was found to be bounded by loci of K points $(L_1-L_2 = V)$, Q points $(S-L_1-L_2-V)$, and LCST points $(L_1 = L_2-V)$.

This study of the methane-ethane-*n*-octane system was undertaken to investigate liquid-liquid-vapor (L-L-V) phenomena that can occur in liquified natural gas (LNG) and natural gas liquid systems. This information is expected to serve as fundamental data with which to evaluate correlations purporting to describe L-L-V behavior in the design of LNG systems.

There are a limited number of binary liquid-liquid-vapor phase equilibria data available for systems rich in methane and ethane relevant to LNG systems. A L-L-V locus has been observed in the system methane-hexane (1) and methanetoluene (2). Each of these loci terminates at both ends with critical points (L-L = V and L = L-V). A L-L-V locus is observed in the system methane-*n*-heptane (3) terminated by a L-L = V critical point and a Q (S-L-L-V) point. Solutes beginning with *n*-octane and higher form crystals before they can become immiscible with methane (4).

With ethane as the solvent, solutes beginning with $n-C_{19}$ and higher demonstrate L-L-V behavior (5-7). With propane, only very long-chain hydrocarbons ($n-C_{37}$ and higher) will demonstrate L-L-V behavior (8).

Very few L-L-V data exist for ternary or more complex systems relevant to LNG systems. A few observations of L-L-V behavior were made during S-L-V studies (9, 10), but many data were taken.

Experimental Section

Materials and Analyses. The methane used in this study was Linde "Ultra Pure" grade stated to be 99.97 mol % pure. The ethane was a Matheson CP grade gas stated to be 99 mol % pure. The methane was used without further purification. However, the ethane was prepared for use by flashing it from the cylinder at room temperature to a 3000-mL storage reservoir maintained at 273.16 K. The vapor phase was then vented from the reservoir to remove the impurities remaining

in the vapor phase after liquefaction from the cylinder. The ethane was further purified through activated carbon before use.

Dew-point bubble-point experiments were carried out for both pure gases. For example at 185.06 K, methane exhibited a difference between dew-point and bubble-point pressures of less than 0.20 atm. The ethane had dew-point and bubble-point pressures which differed by 0.24 atm at 273.16 K. The vapor pressures at 50 vol % liquid agreed well with recent literature values for both gases, and the critical temperature and pressure of the ethane was within 0.2 K and 0.1 atm of those given by the National Bureau of Standards (*11*).

The *n*-octane was purchased from the Humphrey-Wilkinson Chemical Co. It had a stated purity of 99 mol %. The measured air-saturated freezing point agreed to within 0.2 K of current literature values. The *n*-octane was used without further purification.

Apparatus and Procedure. The apparatus used in this study was the same as that used by Kohn and others in cryoscopic studies (9, 12, 13). Briefly, the procedure involved charging and carefully weighing an amount of *n*-octane in a 10-mL glass cell. This glass cell had previously been calibrated for visual volumetric readings. The cell was then placed in a thermostated liquid bath and chilled until the octane froze. The air in the cell was then removed with a vacuum pump. Separately, ethane and then methane were added to the cell from reservoirs maintained at a convenient pressure by a manually operated syringe-type pump. The *n*-octane was metted by the solvents while being mixed in the cell with a steel ball actuated by an external magnet. The use of separate addition systems for methane and ethane gave improved experimental flexibility.

To obtain a Q point (S-L₁-L₂-V), we lowered the temperature until crystals formed and then raised it until only a trace of crystals remained. It was possible to detect visually as little as a few tenths of a milligram of solid octane in the cell. This was regarded as an equilibrium crystal point (Q point) if two liquid phases were present. By judiciously selecting the amounts of *n*-octane, ethane, and methane added to the cell, we made one of the liquid phases occupy at least 60% (usually more than 80%) of the cell volume. The concentration of ethane in the vapor phase was estimated with the aid of existing literature on methane-ethane vapor-liquid equilibria (14). An insignificant amount of octane was assumed to be in the vapor space.

Type-K data points $(L_1-L_2 = V)$ were obtained by increasing the temperature until a sizable L_2 phase (the *n*-octane lean phase) went critical with the vapor phase. This was accompanied with the usual opalescence as the L_2 phase became identical with the vapor phase. For data points where the solute

			mole frac-	mole frac-	molar vol,			mole frac-	mole frac-	mola vol
44	temp,		tion of	tion of		temp,	-	tion of	tion of	
type of data	K	atm		n-octane		type of data K	atm		n-octane	
$K (L_1 - L_2 = V)$	217.66	65.4	0.138	0.0056	85.0	206.51	56.5	0.091	0.0039	79. 62.
	214.04	62.5	0.113	0.0052	88.0	206.28	52.6	0.170	0.0358	
	210.95	60.2	0.100	0.0041	87.7	206.00	56.1	0.095	0.0075	73.
	206.88	57.1	0.082	0.0044	84.7	206.00	55.4	0.103	0.0102	68.
	205.98	56.6	0.077	0.0032	85.7	206.00	55.0	0.108	0.0114	67.
	205.05	56.0	0.078	0.0042	81.0	206.00	54.2	0.130	0.0136	65
$Q(S-L_1-L_2-V)$	201.04	52.5	0.070	0.0063	70.4	206.00	53.9	0.135	0.0144	64
	200.50	51.3	0.075	0.0065	69.4	206.00	53.7	0.140	0.0158	63
	200.11	50.0	0.086	0.0089	65.4	206.00	52.5	0.162	0.0250	62
	199.66	48.4	0.101	0.0135	63.5	205.45	52.5	0.154	0.0253	62
	199.50	48.1	0.104	0.0141	62.7	205.26	52.3	0.144	0.0227	64
	199.42	47.4	0.109	0.0164	62.3	204.00	55.0	0.073	0.0033	78
	198.80	46.2	0.126	0.0216	59.9	204.00	54.2	0.091	0.0069	70
	198.79	45.9	0.128	0.0244	60.7	204.00	53.6	0.098	0.0095	67
	198.54	44.6	0.145	0.0338	60.3	204.00	52.5	0.111	0.0134	63
	198.48	44.6	0.142	0.0321	59.6	204.00	52.1	0.129	0.0160	63
	198.17	44.4	0.151	0.0362	58.3	204.00	51.8	0.133	0.0169	62
	198.06	43.7	0.1 59	0.0482	59 .0	$L_2 - L_1 - V$ 204.00	51.2	0.143	0.0211	61
$LCST (L_1 = L_2 - V)$	214.73	61.1	0.195	0.0471	62.4	204.00	50.8	0.151	0.0240	61
	209.68	55.4	0.197	0.0707	60.7	204.00	50.3	0.162	0.0308	59
	207.41	53.1	0.1 9 0	0.0673	60. 2	203.62	50.8	0.145	0.0235	61
	205.36	51.0	0.185	0.0608	59.7	203.03	48.8	0.172	0.0494	60.
	204.57	50.4	0.176	0.0511	60.6	202.65	48.4	0.179	0.0550	60
	201.93	47.4	0.187	0.0812	59.4	202.18	51.9	0.085	0.0072	72
	200.73	46.3	0.179	0.0754	60.1	202.00	53.2	0.069	0.0049	74
	199.42	45.0	0.183	0.08 97	60.4	202.00	52.5	0.075	0.0062	69
	198.69	44.2	0.176	0.0871	60.6	202.00	52.0	0.089	0.0079	67.
	198.52	44.1	0.181	0.0992	61.4	202.00	51.6	0.093	0.0088	66
	198.15	43.7	0.183	0.0922	60.4	202.00	51.1	0.100	0.0116	64
	197.80	43.3	0.185	0.0783	58.7	202.00	50.1	0.113	0.0157	62
L_2-L_1-V	213.77	60.3	0.187	0.0367	67.7	202.00	49.8	0.127	0.0179	61
	213.24	59.5	0.196	0.0454	65.6	202.00	49.6	0.131	0.0194	61
	213.06	61.6	0.124	0.0067	77.7	202.00	48.8	0.145	0.0256	59
	211.43	58.0	0.179	0.0324	65.7	202.00	48.4	0.155	0.0288	60
	211.39	60.6	0.113	0.0067	80.3	202.00	47.9	0.164	0.0387	58
	210.63	56.5	0.185	0.0408	63.9	201.84	49.3	0.125	0.0195	62
	210.63	59.1	0.133	0.010 9	71.3	200.79	46.5	0.171	0.0518	59
	210.00	58.8	0.131	0.00 9 0	69.8	200.77	46.7	0.165	0.0471	60
	210.00	58.0	0.142	0.0139	67 .0	200.00	48.7	0.103	0.0136	63
	210.00	57.4	0.156	0.0184	64.5	200.00	47.7	0.116	0.0184	61
	209.10	57.0	0.137	0.0145	68.6	200.00	47.6	0.126	0.0187	60
	208.00	57.9	0.098	0.0060	77.9	200.00	47.2	0.134	0.0214	59
	208.00	57.4	0.103	0.0080	69 .3	200.00	46.4	0.148	0.0294	58
	208.00	56.4	0.132	0.0126	67.1	200.00	46.0	0.157	0.0364	59
	208.00	56.1	0.137	0.0141	65.7	199.86	47.2	0.127	0.0223	61
	208.00	54.9	0.159	0.01 97	62.3	199.71	45.5	0.161	0.0460	59
	207.45	56.3	0.11 9	0.0102	70.0					

Table I. Raw Data of the n-Octane Lean Phase (L₂)

rich L₁ phase compositions were determined, the cell was only 40–75% full of L₁ since a sizable amount of L₂ and V were needed to accurately judge the critical point. However, the L₂ = V phase compositions were determined accurately with 90% or more of the cell containing L₂ = V. The L₂ = V data were then used to accurately calculate L₁ phase compositions.

Lower critical solution temperature points (LCST) were obtained by decreasing temperature until significant amounts of L₁ and L₂ became critically identical. For these points, the volume of L₁ = L₂ was usually 85% or more of the cell. Many L₁-L₂-V points were obtained during the experimental approach to the Q, K, and LCST points. A L₁-L₂-V point was taken when one of the liquids filled 80% of the cell volume and the other liquid filled less than 5%.

Temperatures were measured with a platinum resistance thermometer which was accurate to at least ± 0.03 K of the 1968 IPTS scale. Pressure measurements were taken with a Helse Bourdon tube gage which was accurate to at least ± 0.07 atm. The gage was occasionally compared to a dead-weight piston gage. Liquid-phase volumes could be read to ± 0.02 mL. The weight of *n*-octane was determined on an analytical balance to ± 0.0001 g. The volume of methane and ethane gas

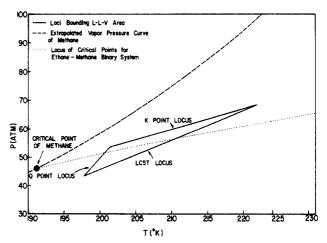


Figure 1. P-T Immiscibility area for methane-ethane-n-octane system.

displaced by mercury was known to a probable error of ± 0.006 mL (± 0.00002 g mol).

Table II. Raw Data of the n-Octane Rich Phase (L,)

			mole	mole	molar
			frac-	frac-	vol,
		press.,	tion of	tion of	mL/(g
type of data	temp, K	atm	ethane	n-octane	mol)
$\frac{1}{K(L_1 - L_2 = V)}$	219.25	66.4	0.240	0.093	63.8
$\mathbf{K} \left(\mathbf{L}_1 - \mathbf{L}_2 - \mathbf{V} \right)$	219.25	62.6	0.240	0.141	66.1
	213.64	62.1	0.234	0.141	66.1
	212.63	61.4	0.220	0.157	67.2
	208.72	58.5	0.188	0.209	74.1
	203.84	55.1	0.145	0.277	80.8
	202.02	53.8	0.136	0.304	83.6
	201.91	53.7	0.130	0.300	82.2
$Q(S-L_1-L_2-V)$	200.85	52.3	0.125	0.274	75.4
$(0 D_1 D_2)$	200.65	51.6	0.132	0.273	75.6
	200.26	50.5	0.133	0.252	73.1
	200.21	50.2	0.145	0.245	72.0
	199.33	47.4	0.155	0.209	69.9
	198.51	44.9	0.182	0.157	66.0
	198.40	44.8	0.175	0.155	64.9
	198.35	44.8	0.177	0.154	64.5
	198.08	43.7	0.177	0.120	62.6
$L_1 - L_2 - V$	218.21	64.8	0.231	0.087	64.9
	213.79	61.8	0.210	0.142	68.1
	210.00	59.4	0.199	0.188	70.1
	210.00	58.7	0.196	0.164	65.6
	210.00	57.0	0.202	0.131	64.2
	208.00	57.4	0.181	0.194	69.5
	208.00	56.7	0.184	0.176	66.6
	208.00	55.8	0.194	0.159	65.9
	208.00	54.3	0.196	0.124	64.4
	208.00	53.8	0.204	0.092	62.1
	206.10	56.4	0.158	0.230	75.2
	206.00	55.2	0.180	0.197	69.2
	206.00	54.1	0.185	0.176	67.3
	206.00	53.2	0.194	0.155	65.7
	206.00	52.0	0.203	0.116	62.4
$L_1 - L_2 - V$	205.25	51.1	0.200	0.111	63.0
	205.25	50.8	0.199	0.099	62.5
	204.00	52.8	0.171	0.199	68.9
	204.00	51.6	0.182	0.171	66.9
	204.00	50.8	0.189	0.148	64.2
	204.00	49.7	0.198	0.102	60.1
	203.47	48.9	0.194	0.096	62.1
	203.00	52.0	0.158	0.219	71.9
	202.00	52.9	0.138	0.255	73.5
	202.00	52.7	0.139	0.250	72.8
	202.00	50.4	0.165	0.199	68.4
	202.00	49.1	0.179	0.167	66.1
	202.00	48.5	0.187	0.144	64.3
	202.00	47.4	0.189	0.083	59.4
	200.72	46.2	0.186	0.091	61.0
	200.00	47.9	0.161	0.192	66.8
	200.00 200.00	46.7 46.2	0.178	0.161	65.4
	198.52	40.2 44.3	0.184	0.139	63.4
	190.32	77.3	0.177	0.121	62.7

Results

Raw L-L-V experimental data for the ternary system methane-ethane-n-octane are presented in Tables I and II. Table I presents composition and molar-volume data of the octane

lean-liquid phase (L₂) for type-K (L₁-L₂ = V), type-Q (S-L₁-L₂) = V), and LCST ($L_1 = L_{2}$ -V) points which surround the area of immiscibility. Table I also reports L₂ information for 63 points within the L-L-V region. The standard deviations of the K, Q, and LCST data points from smooth lines that define the L-L-V region are 1.5% for the *n*-octane mole fraction in L_1 , 6.0% for the *n*-octane mole fraction in L_2 , 1.7% for the mole fraction of ethane, 1.1% for the molar volume, and 0.3% for the pressure. This is consistent with error analyses in similar work by the authors whose liquid-phase solute composition was reliable to $\pm 2\%$.

Figure 1 shows the immiscibility area bounded by loci of type K and type Q and LCST points in pressure-temperature space at 197.8 K and 43.3 atm to \sim 222 K and 69 atm. In the P-T space are three unique points of zero degrees of freedom. They are the point of intersection of the Q locus with the LCST locus (S- $L_1 = L_2$ -V), the point of intersection of the Q locus and the K locus (S-L₁-L₂ = V), and the intersection of the K locus with the LCST locus ($L_1 = L_2 = V$), known as the tricritical point. The location of the tricritical point is an estimate.

Figure 1 also shows the extrapolated vapor-pressure curve for methane (15) and the locus of type-K points for the binary methane-ethane system (16,7). The region of immiscibility falls below the extrapolated vapor-pressure curve and on top of the binary critical locus. The n-octane lean phase behaves similarly to the liquid phase in an ethane-methane binary system with the locus of type-K points for the ternary system falling from 2 to 6 atm above the binary critical locus.

Literature Cited

- (1) Lin, Y-N.; Chen, R. J. J.; Chappelear, P. J. Kobayashi, R. J. Chem. Eng. Data 1977, 22, 402.
- (2) Lin, Y-N.; Hwang, S. C.; Kobayashi, R. J. Chem. Eng. Data 1978, 23, 231.
- (3) Tiffin, D. L.; Luks, K. D.; Kohn, J. P. Adv. Cryog. Eng. 1978, 23, 538.
 (4) Kohn, J. P.; Bradish, W. F. J. Chem. Eng. Data 1984, 9, 5.
- (5) Carfagno, J. A.; McCaffrey, D. S.; Kohn, J. P. J. Chem. Eng. Data 1967, 12, 289.
- (6) Kohn, J. P.; Kim, Y. J.; Pan, Y. C. J. Chem. Eng. Data 1966, 11, 333.
 (7) Wagner, J. R.; McCaffrey, D. S., Jr.; Kohn, J. P. J. Chem. Eng. Data 1968, 13, 22.
- (8) Rowlinson, J. S. "Liquids and Liquid Mixtures", 2nd ed.; Butterworth: London, 1968, p 214
- (9) Green, K. A.; Tiffin, D. L.; Luks, K. D.; Kohn, J. P. Hydrocarbon Pro-cessing 1979, 58 (5), 251.
- (10) Orozco, C. E., Tiffin, D. L., Luks, K. D., and Kohn, J. P., *Hydrocarbon Process.* 1977, 56, 325.
- (11) Goodwin, R. D.; Roder, H. M.; Straty, G. C. NBS Tech. Note (U.S.) 1976, No. 684.
- (12) Kohn, J. P. AIChE J. 1961, 7, 514.
- (13) Tiffin, D. L.; Kohn, J. P.; Luks, K. D. J. Chem. Eng. Data 1979, 24, 308
- (14) Wichterle, I.; Kobayashi, R. J. Chem. Eng. Data 1972, 17, 9.
 (15) Clark, A. M.; Din, F. Trans. Faraday Soc. 1953, 49, 202.
- (16) Hicks, C. P.; Young, C. L. Chem. Rev. 1975, 75, 119.

Received for review June 9, 1980. Accepted December 22, 1980.